This page is for health professionals only.

NO
I AM NOT
A HEALTHCARE PROFESSIONAL.
The comparison of the Effects of the Pilocarpine Induced Accommodation with regard to Cyloplegia on Lens Thickness between Axial Myopia and Emmetropia
PDF
Cite
Share
Request
Original Article
VOLUME: 38 ISSUE: 2
P: 97 - 102
March 2008

The comparison of the Effects of the Pilocarpine Induced Accommodation with regard to Cyloplegia on Lens Thickness between Axial Myopia and Emmetropia

Turk J Ophthalmol 2008;38(2):97-102
1.
2.
No information available.
No information available
Received Date: 22.11.2007
Accepted Date: 22.02.2008
PDF
Cite
Share
Request

ABSTRACT

Conclusions:

There is no statistically significant difference in the effects of the pilocarpine induced accommodation with regard to cyloplegia on lens thickness between axial myopia and emmetropia.

Results:

The mean lens thickness under cyclopentolate was 3.78 ± 0.08 mm and 3.76 ± 0.10 mm in the axial myopia group and the control group, respectively. The mean lens thickness under pilocarpine was 3.96 ± 0.08 mm and 4.00 ± 0.08 mm in the axial myopia group and the control group, respectively. There was no statistically significant difference between the lens thickness of the axial myopia group and control group, under cyclopentolate (p>0.05) and pilocarpine (p>0.05), respectively. The mean increase in lens thickness after pilocarpine instillation with regard to cyloplegia was 0.20 ± 0.10 mm in the axial myopia group and 0.21 ± 0.10 mm in the control group. There was no statistically significant difference in increase in lens thickness after pilocarpine instillation with regard to cycloplegia between axial myopia and control gro-ups (p>0.05).

Methods:

Twenty-seven subjects with unilateral axial myopia and more than 3 diopters of difference in spherical equivalent between two eyes of each subject were included in the study. The mean age of the subjects was 27.3 ± 8.1 (range: 14 to 43) years. Both eyes of all sub-jects underwent axial length and lens thickness measurements with ultrasound biometry under cyclopentolate 1% and pilocarpine 2%, respectively. The eyes with axial myopia (study group) were compared with same subjects fellow (control group) eyes with lower axial length.

Purpose:

To compare the effects of the pilocarpine induced accommodation with regard to cyloplegia on lens thickness between axial myopia and emmetropia.

Keywords:
Axial myopia, lens thickness, accommodation

References

1
Cheng HM, Singh O S, Kwong KK, et al. Shape of the myopic eye as seen with high-resolution magnetic reso- nance imaging. Optom and Vis Sci 1992; 69:698-670.
2
Erdinç E, Asyalı ŞA, Demirbay DP, et al. Emetrop ve mi­yop gözlerde aksiyel uzunluk ve kornea refraktif para­metrelerinin karşılaştırılması. MN Oftalmoloji 2001; 8:26-28.
3
Takmaz T, Zilelioglu G, Yalçın E. Oküler refraktif para­metreler. MN Oftalmoloji 1998; 5:315-317.
4
Jones LA, Mitchell GL, Mutti DO, et al. Comparison of ocular component growth curves among refractive error groups in children. Invest Ophthalmol V is Sci 2005; 46:2317-2327.
5
Atchison DA, Jones CE, Schmid KL, et al. Eye shape in emmetropia and myopia. Invest Ophthalmol Vis Sci 2004; 45:3380-3338.
6
Tamm E, Lutjen-Drecoll E, Jungkunz W, et al. Posterior attachment of ciliary muscle in young, accommodating old, presbyopic monkeys. Invest Ophthalmol Vis Sci 1991; 32:1678-1692.
7
Mutti DO, Sholtz RI, Friedman NE, et al. Peripheral ref- raction and ocular shape in children. Invest Ophthalmol Vis Sci 2000; 41:1022-1030.
8
Croft MA, Kaufman PL. Accommodation and presbyo- pia: the neuromuscular view. Ophthalmol Clin North Am 2006; 19:13-24.
9
Zadnik K, Mutti DO, Fusaro RE, et al. Longitudinal evi- dence of crystalline lens thinning in children. Invest Oph­thalmol Vis Sci 1995; 36:1581-1587.
10
Mutti DO, Zadnik K, Fusaro RE, et al. Optical and struc- tural development of the crystalline lens in childhood. In- vest Ophthalmol Vis Sci 1998; 39:120-133.
11
van Alphen GWHM, Graebel WP. Elasticity of tissues in- volved in accommodation. Vision Res 1991; 31:1417­1438.
12
Dubbelman M, van der Heijde GL, Weeber HA, et al. Changes in the internal structure of the human crystalline lens with age and accommodation. Vision Res 2003; 43:2363-2375.
13
Glasser A, Kaufman PL. Accommodation and presbyo- pia. In: P. L. Kaufman, A. Alm, (Eds), Adler's Physio- logy of the Eye 2003: 195-233. St. Louis: Mosby.
14
Gwiazda J, Thorn F, Bauer J, et al. Myopic children show insufficient accommodative response to blur. Invest Oph­thalmol Vis Sci 1993; 34:690-694.
15
Gwiazda J, Grice K, Thorn F. Response AC/A ratios are elevated in myopic children. Ophthalmic Physiol Opt 1999; 19:173-179.
16
Mutti DO, Jones LA, Zadnik K. A C/A ratio, age, and ref- ractive error in children. Invest Ophthalmol Vis Sci 1998; 39:639.
17
Mantyjarvi MI. Accommodation in hyperopic and myo­pic school children. J Pediatr Ophthalmol Strabismus 1987; 24:37-41.
18
Rabie EP, Steele C, Davies EG. Anterior chamber pach- ymetry during accommodation in emmetropic and myo­pic eyes. Ophthalmic Physiol Opt 1986; 6:283-286.
19
McBrien NA, Millodot M. Amplitude of accommodation and refractive error. Invest Ophthalmol Vis Sci. 1986; 27:1187-1190.
20
Oliveira C, Tello C, Liebmann JM, et al. Ciliary Body Thickness Increases With Increasing Axial Myopia. Am J Ophthalmol 2005; 140:324-325.
21
Glasser A. Accommodation: mechanism and measure- ment. Ophthalmol Clin North Am 2006; 19:1-12.
22
Strenk SA, Semmlow JL, Strenk LM, et al. Age related changes in human ciliary muscle and lens: a magnetic re- sonance imaging study. Invest Ophthalmol Vis Sci 1999; 40:1162-1169.
23
Ostrin LA, Glasser A. Accommodation measurements in a prepresbyopic and presbyopic population. J Cataract Refract Surg 2004; 30:1435-1444.
24
Satıcı A, Çam V. Lens kalınlıgının yaş ve aksiyel uzunluk ile ilişkisi. T Klin Oftalmoloji 1998;7:163-168.
25
Kriechbaum K, Findl O, Kiss B, et al. Comparison of an­terior chamber depth measurement methods in phakic and pseudophakic eyes. J Cataract Refract Surg 2003; 29:89­94.
26
Weiss AH. Unilateral high myopia: optical components, associated factors, and visual outcomes. Br J Ophthalmol 2003; 87:1025-1031.
27
Rajan MS, Keilhorn I, Bell JA. Partial coherence interfe- rometry vs conventional ultrasound biometry in intraocu- lar lens power calculations. Eye 2002; 16:552-556.
28
Leaming DV. Practice styles and preferences of ASCRS members-1999 survey. J Cataract Refract Surg 2000; 26:913-921.
29
Küçüksümer Y, Bayraktar Ş, Sayar A, Y ılmaz ÖF. Biyo- metri cihazlarında kataraktlı lens içinde ultrasonik dalga­nın ilerlerme hızı için farklı degerlerin kullnılmasının ame­liyat sonrası istenilen refraksiyondan sapmaya etkisi. MN Oftalmoloji 2003; 10:102-106
30
Findl O, Kriechbaum K, Sacu S, et al. Influence of opera- tor experience on the performance of ultrasound biometry compared to optical biometry before cataract surgery. J Cataract Refract Surg 2003; 29:1950-1955.
31
Hennessy MP, Chan DG. Contact versus immersion bio­metry of axial length before cataract surgery. J Cataract Refract Surg 2003; 29:2195-2198.
32
Giers U, Epple C.Comparison of A-scan device accuracy. J Cataract Refract Surg 1990; 16: 235-242.
33
Norrby S, Lydahl E, Koranyi G, et al. Comparison of   2
34
A-scans. J Cataract Refract Surg 2003; 29:95-99.Koeppl C, Findl O, Kriechbaum K, et al. Comparison ofpilocarpine-induced and stimulus-driven accommodation in phakic eyes. Exp Eye Res 2005; 80:795-800.