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Introduction

Diabetic macular edema (DME) is a major cause of visual 
impairment in patients with diabetes mellitus and it occurs 
as a result of the breakdown of the blood retinal barrier due to 
metabolic changes associated with hyperglycemia.1 The current 

treatment for DME targets vascular endothelial growth factor 
(VEGF), which has been identified as the most important factor 
in the pathogenesis of DME.2 However, while there is often a 
functional improvement after the resolution of DME with VEGF 
inhibition, ischemic changes may still result in irreversible vision 
loss in the absence of edema.
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Assessment of the perfusion status of the macula, which is an 
important prognostic factor in DME, requires fundus fluorescein 
angiography (FA).3,4 FA requires the administration of fluorescein 
dye. FA is invasive and relatively more time consuming compared 
with optical coherence tomography angiography (OCTA).3,4 
OCTA is a relatively new, non-invasive and rapid method of 
producing high-resolution and depth-resolved images of the 
retinal vasculature without the intravenous administration of 
dye.5,6,7,8,9,10 Layer-by-layer imaging can be performed on OCTA 
to assess the superficial and deep capillary plexuses (SCP/DCP) 
separately. En face images showing vascular changes on OCTA 
can be correlated with corresponding structural changes on OCT 
B-scans.5,6,7,8,9,10 OCTA is also easier to perform on sequential 
visits compared with conventional FA.5,6,7,8,9,10

In the assessment of diabetic retinopathy (DR) and DME, 
OCTA attempts to provide various quantitative parameters 
including vessel density and foveal avascular zone (FAZ) area.11,

12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 Of interest in this study is vessel 
density on OCTA, which is a quantification of the number of 
vessels in a region of interest.23 Many studies have reported 
decreased vessel density in the SCP and DCP in eyes with DR 
and DME compared with normal controls.11,12,13,14,16,17,19,21,22 This 
decrease is also more consistent in the DCP than the SCP.13,16,20 
Notably, the changes in these OCTA parameters have been 
reported in diabetic patients without clinical signs of DR, which 
suggests a potential role of OCTA parameters in demonstrating 
early microvascular alterations in the capillary plexuses.28,29 In 
a recent prospective study, vessel density of the SCP and DCP 
were reported to predict the progression of DME and DR, 
respectively.21

However, the effect of VEGF inhibitor on macular vessel 
density in DME treatment remains controversial. While some 
studies reported an increase in vessel density after VEGF 
inhibitor treatment,20,22 others reported no change in vessel 
density in both the DCP and SCP despite reductions in edema 
and retinal thickness after treatment.17,18,19,25 It was also reported 
that certain eyes may not respond to VEGF inhibitors and 
demonstrate lower vessel density in the DCP but not the SCP.16,20 
Damage to the DCP could thus be a useful predictor of response 
to VEGF inhibitor treatment in DME.16,20 Identification of 
factors associated with response and non-response to VEGF 
inhibitors is important because non-responders often require 
more treatments, which in turn increases cost and poses a 
significant burden on patients.30 In addition, delayed resolution 
of macular edema may cause photoreceptor damage that is 
irreversible.31

The equivocal findings in prior studies have resulted in 
the lack of widespread clinical use of OCTA in assessing 
DME. These inconsistencies can be attributed to the inherent 
shortcomings of OCTA. These include inaccurate segmentation 
and difficulty in obtaining vascular quantification as a result of 
distorted anatomy in diseased states.32 Furthermore, there is no 
consensus regarding the interpretation of DME features such as 
cysts and non-perfusion areas on OCTA.26

This study aimed to evaluate changes in macular vessel 
density in the central and parafoveal regions at the level of 
the SCP and DCP after 3 consecutive intravitreal VEGF 
inhibitor treatments in patients with treatment-naïve DME by 
comparing pre- and posttreatment OCTA images. Meticulous 
manual adjustment of the segmentation lines in each OCTA 
scan was performed when necessary to ensure accuracy and to 
allow quantification of the macular vessel density with the 
in-built software. Macular vessel density in the SCP and DCP 
and changes therein were subsequently compared between 
anatomical responders and non-responders.

Materials and Methods
We performed a retrospective comparative study. All subjects 

had treatment-naïve center-involving DME diagnosed by a 
trained retina specialist with fundus slit-lamp biomicroscopy 
and OCT. All eyes had 3 consecutive administrations of VEGF 
inhibitors at least 30 days apart. A trained retinal specialist 
reviewed all the participants. 

The inclusion criteria were treatment-naïve center-involving 
DME eyes with a central subfield thickness (CST) of 250 μm or 
greater,33 no previous documented DME, and adequate media 
clarity to obtain OCT and OCTA images. Exclusion criteria 
were significant ocular media opacity affecting the quality of the 
ophthalmic imaging, clinical evidence of retinal disease apart 
from DR, previous retinal surgery, and previous DME treatment.

Response was defined anatomically as a 10% decrease in 
CST from baseline.33 The DRCR Network has established that 
a change in OCT thickness of 10% or more is indicative of a 
real change in thickness that can be considered in the decision 
to continue or initiate treatment.34 Spectral-domain OCT and 
OCTA were performed at baseline and after the 3 VEGF 
inhibitor treatments. The study was conducted at the Singapore 
National Eye Centre, Singapore Health Services, Singapore. 
The study was approved by the Institutional Review Board and 
conformed to the tenets of the Declaration of Helsinki. 

Optical Coherence Tomography Angiography
The Triton (Topcon DRI OCT Triton Swept Source OCT; 

Topcon, Tokyo, Japan) features a wavelength of 1050 nm, an 
A-scan rate of 100000 A-scans per second, and an axial and 
transversal resolution of 8 and 20 µm in tissue, respectively. The 
scanning area was captured in 3x3 mm sections centered on the 
fovea. An active eye tracker was employed to reduce motion and 
blinking artifacts during OCTA. 

The OCTA images were obtained with a minimum signal 
strength index of 50 and above and a quality score of 40 
and above. The OCTA images were also assessed to look for 
blurriness, localized weak signals or signal loss, irregular vessel 
patterns and disc boundaries due to motion artifacts, and off-
centered scans. The OCTA images were processed by the OCT 
Angiography Ratio Analysis (OCTARA) detection software. 

OCTA Segmentation
Automatic segmentation lines were used to divide the retinal 

capillary plexus into the SCP and DCP layers. The SCP was 
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defined as the region between the vitreoretinal interface and the 
outer border of the ganglion cell layer. It was segmented with 
one boundary at 2.6 µm below the internal limiting membrane  
and the other 15.6 µm below the inner plexiform layer (IPL). 
The DCP, defined as the region between the inner border of 
the IPL and the outer border of the outer plexiform layer, was 
automatically segmented with the boundaries set at 15.6 µm and 
70.2 µm beneath the IPL, respectively. 

The accuracy of the automatic segmentation lines was verified 
visually and independently by experienced graders (K.Y.C.T. and 
K.X.C.) by examining each B-scan image. Visual verification was 
necessary because large intraretinal cysts in DME often spanned 
multiple layers and this frequently caused segmentation errors, 
especially in the IPL, which is the layer that differentiates the 
SCP and DCP. Inaccurate segmentation was defined if the border 
between the SCP and DCP was not located within the range of 
the IPL. Segmentation errors were manually corrected by both 
graders using the built-in OCTARA software and vessel density 
was recalculated based on the new segmentation boundaries. 
Segmentation was deemed satisfactory when both graders agreed 
that the lines correlated to the correct anatomical layer. 

The segmentation boundaries for all eyes in the SCP and 
DCP were assessed and manually corrected on two separate 
occasions by the same experienced grader (K.Y.C.T.). The 
resultant measurements were compared to calculate the intraclass 
correlation coefficient (ICC) as an assessment of the inter-session 
repeatability of the measurements for all sectors in the SCP and 
DCP. 

Vessel Density Measurement
The vessel density values were obtained from a 3-mm 

circular Early Treatment DR Study (ETDRS) grid centered over 
the fovea. Vessel density was calculated as the proportion of 
the measured area occupied by blood vessels at the level of the 
SCP and DCP. The grid displayed the vessel density of each of 
the sectors. The central region was defined as the central 1-mm 
sector of the ETDRS grid. The parafoveal region was defined 
as the intervening region from the central 1-mm sector to the 
3-mm boundary of the ETDRS grid. The vessel density of the 
central, parafoveal regions, and entire 3-mm region at the levels 
of SCP and DCP were obtained. Figure 1 is a schematic diagram 
that indicates the relative locations of the central and parafoveal 
regions.

Optical Coherence Tomography of the Macula
To assess CST, the Spectralis OCT (Heidelberg Engineering, 

Heidelberg, Germany) was used. A 25-line horizontal raster scan 
(20°x20°, 6.0x6.0 mm) centered on the fovea was performed, 
with 9 frames averaged in each OCT B-scan. The CST was read 
off from the central 1-mm sector of the ETDRS grid centered 
over the fovea. 

Statistical Analysis
Statistical analysis was performed using the Statistical Package 

for the Social Sciences (IBM SPSS Statistics for Windows, Version 
21.0; IBM Corp, Armonk, New York). Continuous variables 
were expressed as the mean ± standard deviation. Comparisons 

between groups were evaluated using the paired samples t test, 
chi-square test, or Fisher exact test where appropriate. A p value 
<0.05 was considered statistically significant.

Results

A total of 22 eyes of 22 patients (10 males and 12 females) 
were studied. The average age was 53.6±8.0 years. At the point 
of diagnosis, all 22 eyes had center-involving DME with DR at 
different clinical stages (13 eyes had mild non-proliferative DR, 
4 eyes had moderate non-proliferative DR, 5 eyes had severe non-
proliferative DR). The mean follow-up time was 96.0±8.0 days. 
As treatment, 20 eyes received monthly intravitreal bevacizumab 
and 2 eyes received monthly intravitreal aflibercept. 

Table 1 shows the CST and vessel density for the entire 
study population at baseline and after treatment. Overall, there 
were no significant differences in SCP or DCP vessel density 
in the central and parafoveal regions after treatment compared 
to baseline, while CST decreased from 416.5 µm to 331.2 µm 
(p=0.025). 

The eyes were subsequently categorized according to 
anatomical response: 12 eyes were considered responders and 
10 eyes were considered as non-responders. There were no 
significant differences in the age (54.2±7.6 vs 52.8±8.9 years, 
p=0.695), gender (7 vs 6 females, p=0.938), and follow-up time 
(97.6±7.8 vs 94.1±8.3 days, p=0.321) between the responders 
and non-responders. CST and vessel density of the SCP and DCP 
also did not differ significantly between the responders and non-
responders at baseline (p>0.05).

Figure 1. Schematic diagram of the 3 mm ETDRS grid centered over the fovea. 
The central 1-mm sector (shown in white) is the central region. The parafoveal 
region is the area (shown in gray) between the central 1-mm sector and the 
boundary of the 3-mm grid. The vessel density of the parafoveal region is the mean 
of the vessel density of the 4 sectors surrounding the central region. The average 
vessel density of the SCP and DCP were calculated as the mean of the vessel density 
of the area encompassed by the entire grid
ETDRS: Early treatment of diabetic retinopathy study, SCP: Superficial capillary plexus , DCP: 
Deep capillary plexus
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After treatment, CST decreased by 173.7 µm in responders 
and increased by 20.8 µm in non-responders (p<0.0001). There 
were no corresponding significant differences in vessel density or 
changes therein between the responders and non-responders in 
the SCP and DCP after treatment. Table 2 shows the CST and 
vessel density of the responders and non-responders at baseline 
and after treatment.

Figure 2 shows serial multimodal images of a responder 
and non-responder. These images demonstrate the lack of 
corresponding change in vessel density in the SCP and DCP 
regardless of the anatomical response in the retina after VEGF 
inhibitor treatment.

The automatic segmentation lines, particularly over the areas 
affected by DME, had to be readjusted for all eyes in this study. 
Inter-session repeatability of the measurements was good for all 
sectors in the SCP and DCP (ICC =0.96 and 0.85, respectively).

Discussion

In this pilot observational study which involved detailed 
manual segmentations of OCTA scans to evaluate macular vessel 
density in DME, the macular vessel density of the SCP and 
DCP were evaluated after 3 consecutive treatments of VEGF 
inhibitors. The vessel density and its changes were subsequently 
compared between anatomical responders and non-responders as 
defined by the CST change. We demonstrated that there were 
no significant changes in macular vessel density after VEGF 
inhibitor treatment and no relationship between macular vessel 
density and CST.

The previous studies describing longitudinal changes in vessel 
density after treatment reported conflicting results.16,17,18,19,20,21,22 
Three studies demonstrated no significant differences in vessel 
density measured on OCTA after intravitreal injections despite 
improvement in edema and CST.17,19,25 These findings are similar 
to those of the current study. Several reasons have been postulated 
to explain this. Firstly, the retinal vessels which sustain ischemic 
damage in DME may not recover and perfuse after VEGF 
inhibition.17 Secondly, the displacement of the vessel plexus 
secondary to cystoid spaces in DME may only displace the retinal 
vessels without causing additional loss, hence the unchanged 
vessel density after resolution of the fluid and cystic spaces 
following treatment.15 The absence of significant change can 
also be attributed to the limitation and inaccuracy of automatic 
segmentation in OCTA as a result of anatomical distortion of the 
retinal layers in DME.17,18,19 

Our findings were not confounded by segmentation 
inaccuracies because of our meticulous manual adjustment of 
the segmentation lines with the resultant good inter-session 
repeatability. The decrease in CST among responders supports 
previous findings that VEGF inhibitors reduce macular leakage 
by targeting VEGF and decreasing vessel hyperpermeability.2 
However, the lack of corresponding change in the vessel density 
in the SCP and DCP regardless of the anatomical response of the 

Figure 2. Serial multimodal images of a responder and non-responder. The vessel 
density (VD) of the superficial capillary plexus (SCP) and deep capillary plexus 
(DCP), optical coherence tomography (OCT) images of the macula, and fundus 
photographs at baseline and after the third visit are shown. Responder: Though 
the responder demonstrated anatomical improvement with a decrease in central 
subfield thickness, intraretinal fluid, subretinal fluid, and cystic spaces, there was 
no significant corresponding change in the vessel density in the SCP and DCP. 
Non-responder: The non-responder demonstrated anatomical worsening. Similarly, 
there was also no significant corresponding change in the vessel density in the SCP 
and DCP

Table 1. Central subfield thickness (CST) and vessel density in the study population at baseline and after treatment

Baseline
n=22

After treatment
n=22

p

Mean (SD) Mean (SD)

CST (µm) 416.5 (73.9) 331.2 (91.4) 0.025

SCP central vessel density (%) 19.9 (2.7) 20.4 (2.7) 0.670

SCP parafoveal vessel density (%) 45.8 (4.3) 45.8 (3.9) 0.999

SCP average vessel density (%) 40.6 (4.2) 40.7 (3.8) 0.954

DCP central vessel density (%) 20.9 (2.9) 21.4 (2.9) 0.692

DCP parafoveal vessel density (%) 45.9 (4.6) 45.8 (4.3) 0.959

DCP average vessel density (%) 40.9 (4.3) 41.0 (4.1) 0.956

n: number, SD: Standard deviation, SCP: Superficial capillary plexus, DCP: Deep capillary plexus
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retina after VEGF inhibitor treatment indicates that the effect 
of VEGF inhibitors in DME treatment may not be related to 
increasing vessel density. Any improvement of macular ischemia, 
therefore, may be an indirect effect of improved tissue perfusion 
and nutrition and not necessarily due to significant changes in 
the retinal vasculature.25

In contrast, other studies have reported a relationship 
between macular vessel density and response to DME treatment. 
A study reported that vessel density in the DCP, but not the 
SCP, was significantly increased after 12 months subsequent to 
the initial resolution of DME.20 There was also a study which 
reported that vessel density in the central region decreased by 
8% after 3 aflibercept injections but remained unchanged in the 
parafoveal region.24 It was also reported that certain eyes may 
not respond to VEGF inhibitors and demonstrate a lower vessel 
density in the DCP but not the SCP.16,20 Another study reported 
that the vessel density of the SCP and DCP in the inner and outer 
parafovea increased significantly after 3 ranibizumab injections, 
but did not return to the normal levels.22 

In comparison, we demonstrated that there were no significant 
changes in the macular vessel density of the SCP and DCP after 
the VEGF inhibitor treatment and there was no relationship 
between macular vessel density and CST. The inconsistency in 

findings among different studies can be attributed to differences 
in study populations, baseline characteristics, treatment, follow-
up time, and imaging modalities used. See Table 3 for a 
comparison among studies. Of note, the criterion for response 
to VEGF inhibitor treatment used is also different. Two studies 
defined response by a reduction of more than 50 μm in CST after 
3 consecutive anti-VEGF treatments.16,20 Therefore, responders 
which were defined as such might have been a subgroup with a 
very robust response to VEGF inhibitor treatment.25 In contrast, 
we defined response anatomically as a 10% decrease in CST from 
baseline.33,34 

The mechanisms supporting an association between the 
improvement in the DCP and treatment response are also not 
clearly defined.16,20 A suggestion is that retinal fluid production 
originates from the SCP and is absorbed through Müller cells 
and the DCP in normal eyes.35 Hence, a recovery in the DCP 
could theoretically help resolve the edema in DME. Another 
possible explanation is that an improvement in the DCP will 
decrease the drive for VEGF production and aid the response to 
VEGF inhibitors.16,20

Separately, the observations in this study also agree with 
previous studies that demonstrated that VEGF inhibitors do 
not worsen retinal capillary nonperfusion.36 The link between 

Table 2. Central subfield thickness (CST) and vessel density at baseline and after treatment categorized by anatomical response

Responder
n=12

Non-responder
n=10

p

Mean (SD) Mean (SD)

Baseline

CST (µm) 436.3 (78.9) 392.7 (63.2) 0.174

SCP central vessel density (%) 19.8 (2.5) 20.1 (3.1) 0.804

SCP parafoveal vessel density (%) 45.7 (4.6) 46.0 (4.1) 0.875

SCP average vessel density (%) 40.5 (4.5) 40.8 (4.1) 0.873

DCP central vessel density (%) 20.2 (3.0) 21.7 (2.7) 0.236

DCP parafoveal vessel density (%) 46.5 (4.5) 45.2 (4.8) 0.520

DCP average vessel density (%) 41.2 (4.3) 40.5 (4.6) 0.716

After treatment

CST (µm) 262.6 (56.9) 413.5 (41.8) <0.0001

SCP central vessel density (%) 20.5 (2.6) 20.2 (2.9) 0.801

SCP parafoveal vessel density (%) 45.3 (3.9) 46.5 (4.1) 0.491

SCP average vessel density (%) 40.3 (3.9) 41.2 (3.8) 0.592

DCP central vessel density (%) 21.1 (3.0) 21.8 (2.8) 0.581

DCP parafoveal vessel density (%) 46.6 (4.3) 44.9 (4.4) 0.372

DCP average vessel density (%) 41.5 (4.2) 40.3 (4.1) 0.508

Change

Change in CST (µm) -173.7 (47.7) 20.8 (38.9) <0.0001

Change in SCP average vessel density (%) -0.2 (2.7) 0.4 (2.5) 0.598

Change in DCP average vessel density (%) 0.3 (2.7) -0.2 (2.8) 0.675

n: number, SD: Standard deviation, SCP: Superficial capillary plexus, DCP: Deep capillary plexus
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ischemia and the administration of VEGF inhibitors has been 
investigated with other imaging modalities.27 Previous case series 
reported an increased risk of worsening of retinal nonperfusion 
in eyes with retinal vascular disease following the administration 
of VEGF inhibitors.37 These studies attributed the worsening of 
retinal nonperfusion to the blockage of VEGF, which is a survival 
factor for vascular endothelial cells. 

A strength of this study is the meticulous manual 
segmentation of the automatic segmentation lines that were 
erroneous due to the disruption of anatomy in DME. The 
majority of the automatic segmentation lines, particularly 
over areas affected by the DME, had to be readjusted for all 
eyes. This process was performed twice, and the inter-session 
repeatability of the measurements was good. Another strength is 
the longitudinal design with the same number of treatments. In 
addition, the use of the in-built vessel density measurement tool 
ensured that this technique could be applied in clinical practice 
without complex image analysis.

Study Limitations
There are several limitations in this study. It was retrospective 

with a small sample size, which may have made it difficult 
to detect small but significant changes in vessel density. The 
follow-up period was relatively short, and this may not have 
allowed for enough time to detect vessel density changes which 
may have manifested with long-term treatment. This study also 
included eyes with DR of different severities and treated with 
different VEGF inhibitors. The capillary response and vessel 
density changes with each VEGF inhibitor may differ. Averaging 
the vessel density in the central 3 mm of the ETDRS grid may 
have resulted in the loss of detection of focal areas of change in 
vessel density and FA was not performed to confirm the presence 
of ischemia. Although poor quality images were excluded and 
the segmentation lines were manually corrected, there is still a 
possibility of measurement error due to projection artifacts on 

OCTA that may also have confounded the results. This study was 
also dependent on manual segmentation of the layers on OCTA to 
overcome the issues of inaccurate segmentation and difficulty in 
obtaining vascular quantification as a result of distorted anatomy 
in diseased states. This was very labor-intensive. However, other 
methods currently involve custom image processing software 
that is usually unavailable in clinical settings.

Conclusion

There were no significant changes in macular vessel density 
after the early stages of VEGF inhibitor treatment for DME, 
and there was no relationship with anatomical response. The 
effect of VEGF inhibitors in DME treatment therefore may not 
be directly related to increasing vessel density. This is a small 
pilot study with manual segmentation of each OCTA scan to 
overcome the issues of inaccurate segmentation and difficulty in 
obtaining vascular quantification as a result of distorted anatomy 
in diseased states. Further studies with larger population size and 
longer duration are needed to exposure the role of OCTA vessel 
density measurements as a potential biomarker of response to 
VEGF inhibitor treatment for DME.
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